

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous)

(ISO/IEC - 27001 - 2013 Certified)

SUMMER – 19 EXAMINATION

Subject Name: Thermal Engineering Model Answer

Subject Code:

22337

Important Instructions to examiners:

- 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
- 2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
- 3) The language errors such as grammatical, spelling errors should not be given more Importance (Not applicable for subject English and Communication Skills.
- 4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
- 5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
- 6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
- 7) For programming language papers, credit may be given to any other program based on equivalent concept.

Sol.	Differen Ans:	tiate between he	eat and work.		
	Sr.No.	Parameter	Heat	Work	
	1.	Definition	Form of energy that is transferred between system and surrounding or two systems due to temperature difference	The amount of energy transferred by a force acting though a distance	Any 2 poin 1 marks fo each Point difference
	2. 3.	Function Energy	Heat is a function of the state Due to Temperature	Heat is a function of the Path Other than Temperature	
b)	State Cla	Interaction ausius statemer	Difference at of second law of thermod	difference ynamics.	
Sol.	a cyclic l temperat expendit	Process without a ure to a body at a	tate that "It is impossible for a same external force, to transfer here higher temperature. Thus extends to transfer heat from a body at a Heat Source \int_{0}^{10}	eat from a body at a lower rnal mechanical work	1 mark

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous)

(Autonomous) (ISO/IEC - 27001 - 2013 Certified)

c)	Define dryness fraction and degree of superheat.	
Sol.	Dryness fraction : It is defined as a fraction of dry steam that is present in a liquid vapour is called dryness fraction.	Any one
	Or Dryness fraction is the ratio of the Mass of actual dry steam to the Mass of wet steam.	definition 1 mark
	$X = M_s/M_s+M_w$ Where X – Dryness fraction	
	M_s – mass of vapour (dry steam) contain in steam M_w = mass of water in suspension in steam	
	Degree of Superheat: The difference between the temperature of superheated steam and saturated steam ($T_{sup} - T_{sat}$) is known as degree of superheat.	1 mark
d)	Define Mach number and critical pressure.	
Sol.	1. Mach Number: In fluid dynamics, the Mach number (M or Ma) is a dimensionless quantity representing the ratio of flow velocity past a boundary to the local speed of sound. $M = c/a$	1 mark
	M is the Mach number, c is the local flow velocity, a is the speed of sound in the medium 2. Critical Pressure: The Pressure for which the maximum discharge through nozzle occurs is called as critical pressure . It is denoted as P _c	1 mark
e)	Explain bleeding of steam.	
Sol.	It is process of draining steam from turbine at certain point during its expansion and using these steams for heating the feed water supplied to boiler is known as bleed and the process is known as bleeding of steam.	1 mark
	Boiler Cooling water Figure: Bleeding of steam	1 mark
f)	State Dalton's law of partial pressure.	
Sol.	This law states that "The total pressure exerted by a mixture of air and water vapour on the walls of container is the sum of partial pressure exerted by air separated and that exerted by vapour separately at common temperature of the condenser". P = Pa + Ps	01 mark
	Where Pa= partial pressure exhausted by air	01 mark
	Ps = partial pressure exhausted by vapour	

g)	Define Fourier's law.	
Sol.	The law state that for homogeneous material the rate of heat transfer in steady state in any direction is directly proportional to temperature gradient in that direction.	01 mark
	$Q/A \alpha dt/dx$	01 mark
	Q/A = -k dt/dx Where, Q/A is rate of heat transfer	
	dt/dx is temperature gradient	
	k conductivity of medium	
Q.2.	Attempt any <u>THREE</u> of the following:	12 Marks
a)	State extensive property and Intensive property with two examples each.	
Sol.	Extensive property:- An extensive property of a system is one whose value depend upon the mass of the system. e.g. volume, energy, enthalpy, entropy, internal energy.	1 mark
		1 mark
	Intensive property:- An intensive property of a system is one whose value does not	
	depend upon the mass of the system.	1 mark
	e.g. Density, Temperature, Pressure	1 mark
b)	Define isentropic process and plot it on, P-V and T-S diagram.	
Sol.	Isentropic Process: The process in which working substance neither receives nor rejects heat to its surrounding during expansion or compression is called as Isentropic process, it is also known as adiabatic process. Adiabatic process reversible when it is frictionless and the process is irreversible when it involves friction . Process is denoted by equation $PV^{\gamma}=C$	2 marks
	$P_{1} \xrightarrow{P_{1}} P_{2} \xrightarrow{P_{2}} P_{2} \xrightarrow{P_{2}} 2$ $P_{2} \xrightarrow{P_{2}} \xrightarrow{P_{2}} 2$ $P_{2} \xrightarrow{P_{2}} \xrightarrow{P_{2}}$	2 marks (1 Mark fo each Dig.)

	Define				
	(i) Sens	sible heat			
	(ii) Latent heat				
Sol.	i) Sens	sible Heat:			
		at in which change in ged that heat is known	-	n be observed but phase remains	1 mark
	This he	eat can be sensed by or	rdinary thermometer, It is give	en by the equation	
	Sensibl	e heat = m Cp $(T_2 - T_1)$)		
	m is ma	ass			
	Cp is S	pecific heat at constar	nt pressure		1
	T ₁ is In	itial Temperature			1 mark
	T ₂ is Fi	nal Temperature	~		1 mark
	ii) Latent Heat:				1 mark
	It is define as amount of heat required for the change of phase of 1 kg of water at saturated temperature to dry saturated steam at constant pressure.				
	It is denoted by L , Its value can be directly obtained from steam table				1 mark
	Heat at which solid changes phase to liquid is known as Latent heat of fusion				
	Heat at which Liquid Changes Phase to vapour is known as Latent heat of vaporization				
	i i i u u	which Liquid Changes]	Phase to vapour is known as Late	ent heat of vaporization	
d)				-	
d) Sol.			Phase to vapour is known as Late boiler and fire tube bo Water tube boiler	-	
,	Differe	entiate water tube Parameter	boiler and fire tube bo Water tube boiler	oilers (any four) Fire tube boiler	
,	Differe Sr.	entiate water tube Parameter	boiler and fire tube bo	oilers (any four) Fire tube boiler	
,	Differe Sr. No.	entiate water tube Parameter	boiler and fire tube bo Water tube boiler Water is circulated in tube and hot gases passed over	bilers (any four) Fire tube boiler Hot gases are circulated through the tube and water	
,	Differe Sr. No. 1.	entiate water tube Parameter Medium in tube Steam Formation	boiler and fire tube bo Water tube boiler Water is circulated in tube and hot gases passed over the tube Steam formation rate is	bilers (any four) Fire tube boiler Hot gases are circulated through the tube and water flows over tube.	each poin
,	Difference Sr. No. 1. 2. 3. 4.	entiate water tube Parameter Medium in tube Steam Formation Rate	boiler and fire tube boilerWater tube boilerWater is circulated in tubeand hot gases passed overthe tubeSteam formation rate ishighIt can generate steam athigher pressure more than	Dilers (any four) Fire tube boiler Hot gases are circulated through the tube and water flows over tube. Steam formation rate is low Generate steam at lower	each point
,	Differe Sr. No. 1. 2. 3. 4. 5.	entiate water tube Parameter Medium in tube Steam Formation Rate Steam Pressure	boiler and fire tube boilerWater tube boilerWater is circulated in tube and hot gases passed over the tubeSteam formation rate is highIt can generate steam at higher pressure more than 25 barOperating cost high Overall efficiency high	Dilers (any four)Fire tube boiler Hot gases are circulated through the tube and water flows over tube.Steam formation rate is lowGenerate steam at lower pressure up to 25 barOperating cost low Overall efficiency low	1 mark fo each point (Any 4 Po
,	Difference Sr. No. 1. 2. 3. 4. 5. 6.	entiatewatertubeParameterMedium in tubeSteam Formation RateSteam PressureOperating cost Overall efficiency Cleaning and Inspection	boiler and fire tube boilerWater tube boilerWater is circulated in tube and hot gases passed over the tubeSteam formation rate is highIt can generate steam at higher pressure more than 25 barOperating cost high Overall efficiency high Cleaning and Inspection is easy	bilers (any four)Fire tube boilerHot gases are circulated through the tube and water flows over tube.Steam formation rate is lowGenerate steam at lower pressure up to 25 barOperating cost low Overall efficiency lowCleaning and Inspection is difficult	each poin
,	Differe Sr. No. 1. 2. 3. 4. 5.	entiate water tube Parameter Medium in tube Medium in tube Steam Formation Rate Steam Pressure Operating cost Overall efficiency Cleaning and Steam And	boilerand fire tube boilerWater tube boilerWater is circulated in tube and hot gases passed over the tubeSteam formation rate is highIt can generate steam at higher pressure more than 25 barOperating cost highOverall efficiency highCleaning and Inspection is	bilers (any four)Fire tube boilerHot gases are circulated through the tube and water flows over tube.Steam formation rate is lowGenerate steam at lower pressure up to 25 barOperating cost low Overall efficiency lowCleaning and Inspection is	each point
,	Difference Sr. No. 1. 2. 3. 4. 5. 6.	entiatewatertubeParameterMedium in tubeSteam Formation RateSteam PressureOperating cost Overall efficiency Cleaning and Inspection	boiler and fire tube boilerWater tube boilerWater is circulated in tube and hot gases passed over the tubeSteam formation rate is highIt can generate steam at higher pressure more than 25 barOperating cost high Overall efficiency high Cleaning and Inspection is easy	bilers (any four)Fire tube boiler Hot gases are circulated through the tube and water flows over tube.Steam formation rate is lowGenerate steam at lower pressure up to 25 barOperating cost low Overall efficiency lowCleaning and Inspection is difficultLow to medium power	each poin

Page 4 of 15

a)	State the term governing of turbine and explain nozzle control governing.	
a) Sol.	 Governing of turbine: The function of governor is to regulate the supply of steam to the turbine so that the speed of rotation shall remain constant at all loads. Nozzle control governing: Image: State of the sta	01 mark 02 marks for Figure 01 mark explanation
	✓ The nozzles are divided into three groups N ₁ , N ₂ and N ₃ and the control valves V ₁ , V ₂ and V ₃ controls the amount of steam supply to each nozzle group respectively.	
b)	Explain principle of working of Impulse steam turbine with neat sketch.	

Sol.		02 marks for
	Nozzle Steam in 6 7 Velocity graph 5 8 Pressure graph	figure
	MB = Moving Blade	02 marks for
	Figure: Impulse Turbine	explanation
	Construction:	
	Impulse turbine is simpler, less expensive and does not need to be pressure proof. It	
	can operate with any pressure stream but is considerably less efficient.	
	Impulse turbine consist of one fixed set of nozzle mounted on a stationary diaphragm that	
	orient the steam flow into high speed jets, which is followed by one set of moving blade	
	ring as shown in Fig. for a single stage impulse turbine.	
c)	A gas occupying 0.26 m ³ at 300°C and 0.4 MPa pressure expands till volume	
	becomes 0.441 m ³ and pressure 0.26 MPa. Calculate the change in internal energy per kg of gas.	
	$C_p = 1 \text{ kJ/kg} \text{ K}, C_y = 0.71 \text{ kJ/kg} \text{ K}.$	

Sol.	Ø.3.c.	
	Sol?:-	
	Given data:	
	V1 = 0.26 m3 J1 = 800 (= 300 + 273 = 573 K	
	$P_1 = 0.4 MP_9$	
	$V_2 = 0.441 \text{ m}^3$	
	$P_2 = 0.26 MPa$ $C_P = 1 K_3 K_9 K_1 C_V = 0.71 K_3 K_9 K_1$	
	Assume Temperature is constant	
	The change in internal energy = du = 0	
	20	02 marks
	Assume Adiabatic process,	
	pvr=c	
	Y S	
	Figure: p-V&T-s diagram of Adiabatic process	
	$\Gamma = \left(\frac{\Gamma_{P}}{2\pi}\right) = 1.4$ is an isentropic index.	
	The change in internal energy = m(V(T2-T1)	02 marks
	Y-1 (0:26) 1:4-1	
	$T_2 = T_1 \times \left(\frac{V_1}{V_2}\right) = 300 \left(\frac{1}{0.441}\right)$	
	= 242.836 C	
	The change in internal energy	
	= 1KO.71 x (242.836-300)=-40.586 KJ kg	
	:. The negative sign indicates that internal energy is decreasing.	
d)	Determine the amount of heat supplied to 2kg of water at 25°C to	
	convert it into steam at 5 bar and 0.9 dry.	

Sol.		6).g.d.		
		9	ຣາມາ:		
			Given data:		
		-	mass of water =	mw= 2 kg	
			Temp of Water = "		
			Steams at 5 bas and doyn		
			Stand of D bas and a gra		01 mark
			Heat in water = MW CpW	Δŧ	VI mark
			= 2×4.1872	Conversion of the second s	
			= 209.35	No. W. C.	
					01 mark
			From steam table at 5 bo	13	
			hf = 640.1 k3/kg h	fg = 2107.4 25/29	
			S0,		
			Heterm = hfthfatz	(\mathbf{z})	
			= 640.1 + 0.9 + 2	107.4	
			= 2536.76 KJ		
			For 2kg, heat required =	2+ 2536.76	01 mark
				5073.53 KJ	
		-			
			- Amount of heat supplied	= 5073.53 - 209.35	01 mark
				= 4864.17 kj	
Q.	4	Attempt a	my <u>THREE</u> of the following:		12 Marks
	а)		ate between natural draught and forced of	Iraught cooling tower	
Sol.	u)	Sr. No.	Natural draught	Forced draught	01 mark for
		1	The air flows naturally without fan	Fan is located at the top of the	each
			through tower and provides required	tower and enters the side of the	differentiation
			cooling	tower.	
		2	The air circulation through the tower	The air circulation through the	
			depends on wind velocity.	tower depends on fan speed.	
		3	The cooling Rate and efficiency of tower	The cooling Rate and efficiency	
		4	is less. It requires large space for same capacity.	of tower is high. It requires less space for same	
		4	It requires large space for same capacity.	capacity.	
		5	No power requires due to absence of fan.	Fan requires more power as it	
				handles hot air.	
		6	The temp. of water coming out from	The temp. of water coming out	
			1 0	1 0	

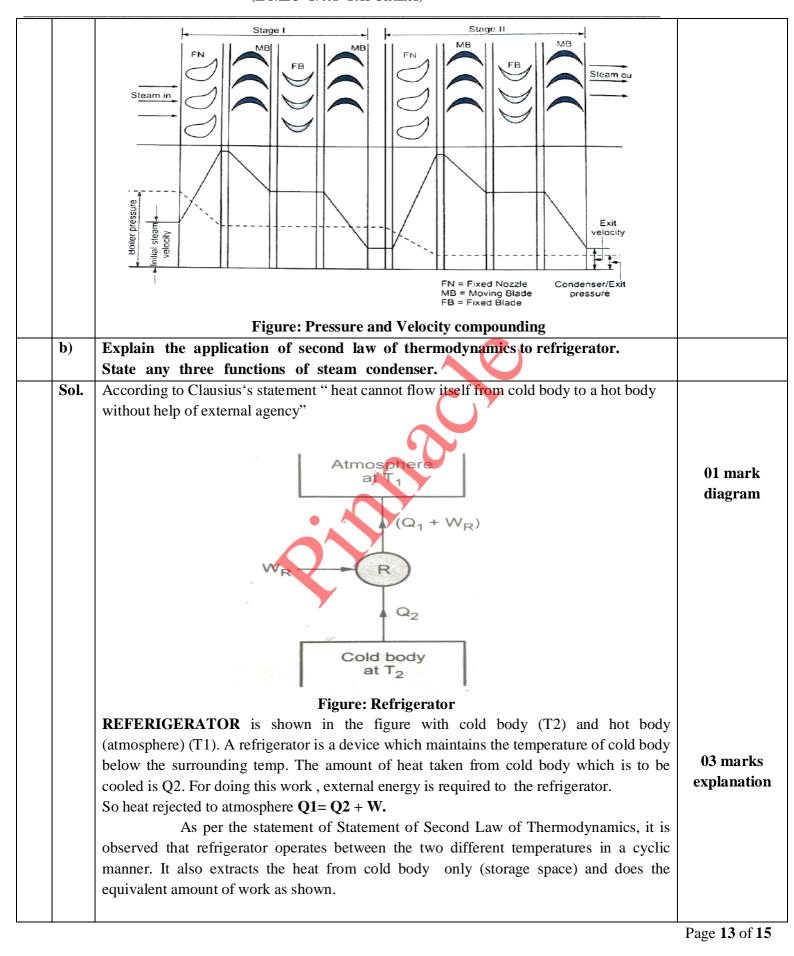
	tower cannot be controlled. from tower can be controlled.	
b)	A gas has a volume of 0.14 rn ³ , pressure 1.6 bar and a temperature	
	110° C. If the gas is compressed at constant pressure until its volume becomes	
	0.112 m ³ Determine:	
	i. Work done in compression of gas	
ol.	ii. heat given out by gas	
01.	Q. 4. b.	
	Solp :	
	Given data :	
	$V_1 = 0.14 \text{ m}^3$	
	$P_1 = P_2 = 1.6 \text{ bar} = 1.6 \times 10^5 \text{ N/m}^2$	
	$T_1 = 110 + 273 = 383 \text{K}$	
	$V_2 = 0.112 \text{ m}^3$	
	Assume Cp=1kjkgk	
		01 mark
	P 1 1 2	
	Ý S	
	figure :- P-V 4 T-s diagram of Esobaric process	
	$P_1Y_1 = P_2Y_2$	
	$\frac{T_1T_1}{T_1} = \frac{T_2T_2}{T_2}$	
	$T_2 = \sqrt{2 \times T_1} \implies 0.112 \times 383$	01 mark
	$T_2 = \sqrt{2 \times T_1} \xrightarrow{\longrightarrow} 0.112 \times 383$	
	$T_2 = 306.4 \text{ K}$	
	1) Work done in compression of gas	
	$dw = p (V_2 - V_1)$	
	$= 1.5 \times 10^{5} \times (0.112 - 0.14)$	01 mark
	= -44.80 J	
	= -4.48 kJ	
	2) Heat given out by gas	
	$dg = du + dw = mcp(T_2 - T_1)$	01 mark
	$= 1 \times 1 \times (306.4 - 383)$	
	= -76.6 KJ	
c)	A certain gas has $C_p = 1.968 \ kJ/kg K C_y = 1.507 \ kJ/kgK$. Find the	
	molecular weight and the gas constant. A constant volume chamber of	

Page 9 of 15

		s gas at 5°C. Heat is transferred to	
		0°C. Fmd the work done and change	
	in internal energy.		
	0.4.5		
Sol.	<u> </u>		
	Given data:		
	Cp = 1.968 Ks kg kg	3) Heat transfer = g =	01 mark each
	Cy = 1.507 kJ k9 k	g = m cv (T2-T1)	answer
	Constant volume, V,=0.3 m3	= 2×1.507 × (373-278)	
	m = 2 kg	=286.33 KJ 13	
	71 = 5"c + 273 = 278 k		
	T2 = 100 c+ 273 = 373 K	Alc to first law of thermodynamics	
	Coloring to a h	dg= AU+W .	
	find. Work done (W)	but w=0	
	Weat toms for (9) 4	do a AU	
	Change in internal energy (du)	4) change in internal energy	
	DGAS constant, R=Cp-CV		
	=1-968-1-507	AU = 286.33 ES 19	
	= 1-968-1-107 = 0-461 Ks/rg'k	Heat Supplied for used to	
	- 0.441 POLID K	increased the Internal energy.	
	.; MR = 8-3143	Interested And Internal survey	
	Molecular weight a		
	M = 8-3143		
	0.461		
	=18 kg		
	2) Work dome = W= Pdy		
	As constant volume Chamber		
	dv = 0		
	So, Work done = W= 0		
d)	Define:		T
	i. Transmissivity		
	ii. Black body		
	iii. Grey body		
	iv. Reflectivity		
Sol.			+
	Transmissivity:		01 mark each
	It is the the fraction of energy which is transm	nitted through the body.	definition
	Or		
	The ratio of amount of energy transmitted to	the amount of energy incident on a body.	
	Black hody: A black body is an object that a	booths all the radiant energy reaching its	
	Black body: A black body is an object that a surface from all the direction with all the way		
	Grey Body: A gray body is defined as a body vary with variation in temperature and wavel		

			02 marks
		$Q = \frac{T1 - T2}{\frac{1}{2\pi LK} \log \frac{r2}{r1}}$	
		Inside temp T1 =140° C , Outside temp T2 =40° C , Ksteel = 24 W/Mk	02 marks
		$d^{2}=8 \text{ cm}$	
	Sol.	Given Data: Length of pipe = $L=1.5$ m, Inner diameter, $d1=6$ cm, Outer diameter	
		the pipe if length of pipe is 1.5 m.	
		conductivity of steel is 24 W/mk. Calculate the rate of heat transfer through	
		has inside temperature $140^{\circ}C$ and outside' temperature $50^{\circ}C$. The thermal	
	b)	Asteel pipe of inner and outer diameter 6 cm and 8 cm respectively	
		7.carry over losses	
		6. Loss due to moisture	
		5. Radiation loss	
		4. Loss due mechanical friction	
		3. Leakage loss	
		2. Loss due to friction	
		1. Residual velocity loss	
	Sol.	Losses in steam turbine	
×	a)	List out any six losses in steam turbine.	
0) .5.	Attempt any <u>TWO</u> of the following:	12 Marks
		Figure: Surface Condenser	
		Condensate to extraction pump	
		inlet	
		Water	
			label.
			02 marks for
		Baffle plate	
			Sketch
		outlet	02 marks for Sketch
		Water Tubes Plate	
Sol.		Exhaust steam	
	e)	Draw a neat sketch of surface condenser and label it.	
		a body.	
		It is defined as the ratio of amount of energy reflected to the amount of energy incident on	
		Reflectivity:	
		between 0 to 1.	
		definite percentage of incident energy irrespective of wavelength. Its absorptivity lies	

Page 11 of 15



	$Q = \frac{140 - 40}{1}$	02 montra
	$\frac{1}{(2\pi x 1.5 x 24)} log \frac{1}{3}$	02 marks
	$a = \frac{100}{100}$	
	$Q = \frac{1.272 \times 10^{-3}}{1.272 \times 10^{-3}}$	
	Q =78616.35 Watts or 78.62 KW	
<u>c)</u>	List any SIX methods of energy conservation in boilers.	
Sol.	List any six methods of energy conservation in boilers	01 mark eac
	Following methods can conserve energy in boilers	
	1) Reduction radiation and convention losses	
	2) Waste heat recovery for heating to the feed water.	
	3) Continues monitoring of flue gases losses and other losses	
	4) Using standard efficient fuel firing equipments, burners, mechanical stockers.	
	5) Scheduling boiler operation to avoid fluctuation in boiler load	
	6) Installation of variable speed drives.	
	7) Optimise boiler stem pressure and temperature	
	8) Periodic energy audit.	
	Periodic preventive maintenance of all components.	
6.	Attempt any <u>TWO</u> of the following:	12 Marks
a)	Explain the necessity of compounding in steam turbine and draw a neat	
	sketch of pressure velocity compounding.	
Sol.	Necessity of compounding in steam turbine: Compounding of steam turbines is	
	necessary 1) To reduce speed of rotor blades to practical limits.	
	2) To reduce centrifugal force and hence to prevent failure of blades.	03 marks
	3) To reduce velocity of steam leaving blades.	
	If entire pressure drop from boiler pressure to condenser pressure is carried out in a single	
	stage of nozzle then the velocity of steam entering the turbine blades will be very	
	high. The turbine speed has to be also very high as it is directly proportional to steam	
	velocity. Such high rpm of turbine rotor are not useful for practical purposes & there is a	
	danger of structural failure of blades due to excessive centrifugal stresses. Hence	
	compounding is carried out.	
	Neat sketch of pressure velocity compounding.	
		03 marks fo
		figure

		In a full cycle of a refrigerator, three things happen:	
		1. Heat is absorbed from cold body, the heat can be called Q2.	
		2. Some of the energy from that input heat is used to perform work (W).	
		3. The rest of the heat is rejected to hot body (Q1).	
		An performance of the refrigerator can be calculated as: Efficiency = Q1 / work W	
		So it is cleared that the external energy is required to absorb heat from cold body and to	
		reject it to hot body.	
		Function of condenser:	02 marks
		1) To maintain a very low back pressure so as to obtain the maximum possible	
		energy from steam and thus secure a high efficiency.	
		2) To condense the steam and reuse it to supply as pure feed water to the hot well	
		from where it is pumped back to the boiler.	
		3) To remove of air and non-condensable gases	
	c)	Derive characteristic gas equation using Boyle'S and Charle's law.	
	Sol.	Characteristic gas equation using Boyle's & Charle's law:	
		Let us consider a unit mass of an ideal gas to change its state in following two processes as	01 mark for
		shown in fig.	each step
		P=C	
		T = C	
		2.	
		V	
		Here, process 1-2' is at constant pressure	
		Process 2'-2 is at constant temperature	
		Now, applying Charle's law for process 1-2'	
		We get	
		$\frac{V1}{T1} = \frac{V2'}{T2} as(T2' = T2) \dots \dots \dots \dots (I)$	
		Now, applying boyle's law for process 2'-2,	01 mark
		P2' V2 = P2 V2 (T=C)	
		P1 V2'=P2 V2 (As $P2'=P1$)	
		$V2' = \frac{P2V2}{P1}\dots$	01 mark
		Substituting eq (II) IN eq (I), We get	
		V1 P2 V2	
		$\frac{1}{T_1} = \frac{1}{P_1} \frac{1}{T_2}$	
l			

	$\frac{P1V1}{T1} = \frac{P2V2}{T2}$	
	i.e PV	
	$\frac{T}{T} = Constant = R \dots \dots$	
	$\frac{mxPV}{T} = Rx m$	
	$\frac{PV}{T} = Rx m \text{ here } V = Vm = total \text{ volume}$	
	Therefore PV = m R TCHARACTERISTIC EQUATION	

ENGINEERING

OUR CENTERS : KALYAN | DOMBIVLI | THANE | NERUL | DADAR Contact - 9136008228